• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcement learning-based school energy management system

    Thumbnail
    View/Open
    energies-13-06354-v2.pdf (5.312Mb)
    Date
    2020
    Author
    Chemingui, Yassine
    Gastli, Adel
    Ellabban, Omar
    Metadata
    Show full item record
    Abstract
    Energy efficiency is a key to reduced carbon footprint, savings on energy bills, and sustainability for future generations. For instance, in hot climate countries such as Qatar, buildings are high energy consumers due to air conditioning that resulted from high temperatures and humidity. Optimizing the building energy management system will reduce unnecessary energy consumptions, improve indoor environmental conditions, maximize building occupant's comfort, and limit building greenhouse gas emissions. However, lowering energy consumption cannot be done despite the occupants' comfort. Solutions must take into account these tradeoffs. Conventional Building Energy Management methods suffer from a high dimensional and complex control environment. In recent years, the Deep Reinforcement Learning algorithm, applying neural networks for function approximation, shows promising results in handling such complex problems. In this work, a Deep Reinforcement Learning agent is proposed for controlling and optimizing a school building's energy consumption. It is designed to search for optimal policies to minimize energy consumption, maintain thermal comfort, and reduce indoor contaminant levels in a challenging 21-zone environment. First, the agent is trained with the baseline in a supervised learning framework. After cloning the baseline strategy, the agent learns with proximal policy optimization in an actor-critic framework. The performance is evaluated on a school model simulated environment considering thermal comfort, CO2 levels, and energy consumption. The proposed methodology can achieve a 21% reduction in energy consumption, a 44% better thermal comfort, and healthier CO2 concentrations over a one-year simulation, with reduced training time thanks to the integration of the behavior cloning learning technique. 2020 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/en13236354
    http://hdl.handle.net/10576/36636
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video