• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nitrate removal from water using UV-M/S2O42- advanced reduction process

    Thumbnail
    View/Open
    s13762-013-0375-0.pdf (692.9Kb)
    Date
    2013-10-03
    Author
    Bensalah, N.
    Nicola, R.
    Abdel-Wahab, A.
    Metadata
    Show full item record
    Abstract
    In this work, a new process called advanced reduction process (ARP) was used for nitrate removal from water. This ARP process combines sodium dithionite as reducing agent with ultraviolet irradiation using medium pressure lamps (UV-M) as an activating method. Experimental results showed that UV-M/S2O42- process achieved almost complete removal of nitrate from aqueous solutions containing 25 mg NO3-/L using stoichiometric dose of dithionite of 68.8 mg/L at neutral pH conditions. Analysis of final products and material balance confirmed that NO3- ions were reduced to ammonium with formation of nitrite as intermediates in addition to the formation of small amounts of volatile species, mainly ammonia and nitrogen gas. Effects of certain experimental parameters including dithionite dose, initial pH, initial nitrate concentration, and UV light source on the kinetics and efficiency of nitrate reduction were evaluated. Increasing dithionite dose augmented the rate of nitrate reduction and enhanced the efficiency of ARP process. Dithionite doses higher than stoichiometric ratios led to complete removal of nitrate in shorter reaction time. UV-M/S2O42- process was found to be effective only under neutral pH or alkaline conditions, and its removal efficiency is negligible in acidic medium (pH < 4). Irradiation with UV-M was more effective than low pressure or narrow band lamps. These results can be attributed to the contribution of several mechanisms for nitrate reduction to ammonium. These include the following: direct photolysis, chemical reduction of nitrate dithionite, and mediated reduction of nitrate by free reducing radicals. © 2013 Islamic Azad University (IAU).
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84905963246&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s13762-013-0375-0
    http://hdl.handle.net/10576/37163
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video