• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermally assisted efficient electrochemical lithium extraction from simulated seawater

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-08-10
    Author
    Yanxi, Yu
    Yuan, Ziwen
    Yu, Zixun
    Wang, Cheng
    Zhong, Xia
    Wei, Li
    Yao, Yuanyuan
    Sui, Xiao
    Han, Dong Suk
    Chen, Yuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Extracting lithium electrochemically from seawater has the potential to resolve any future lithium shortage. However, electrochemical extraction only functions efficiently in high lithium concentration solutions. Herein, we discovered that lithium extraction is temperature and concentration dependent. Lithium extraction capacity (i.e., the mass of lithium extracted from the source solutions) and speed (i.e., the lithium extraction rate) in electrochemical extraction can be increased significantly in heated source solutions, especially at low lithium concentrations (e.g., < 3 mM) and high Na+/Li+ molar ratios (e.g., >1000). Comprehensive material characterization and mechanistic analyses revealed that the improved lithium extraction originates from boosted kinetics rather than thermodynamic equilibrium shifts. A higher temperature (i.e., 60 oC) mitigates the activation polarization of lithium intercalation, decreases charge transfer resistances, and improves lithium diffusion. Based on these understandings, we demonstrated that a thermally assisted electrochemical lithium extraction process could achieve rapid (36.8 mg g-1 day-1) and selective (51.79% purity) lithium extraction from simulated seawater with an ultrahigh Na+/Li+ molar ratio of 20,000. The integrated thermally regenerative electrochemical cycle can harvest thermal energy in heated source solutions, enabling a low electrical energy consumption (11.3–16.0 Wh mol-1 lithium). Furthermore, the coupled thermal-driven membrane process in the system can also produce freshwater (13.2 kg m-2 h-1) as a byproduct. Given abundant low-grade thermal energy availability, the thermally assisted electrochemical lithium extraction process has excellent potential to realize mining lithium from seawater.
    URI
    https://www.sciencedirect.com/science/article/pii/S0043135422009162
    DOI/handle
    http://dx.doi.org/10.1016/j.watres.2022.118969
    http://hdl.handle.net/10576/37238
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video