• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes

    Thumbnail
    View/Open
    energies-15-08235.pdf (4.062Mb)
    Date
    2022
    Author
    Amer, Aya
    Shaban, Khaled
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    With smart grid advances, enormous amounts of data are made available, enabling the training of machine learning algorithms such as deep reinforcement learning (DRL). Recent research has utilized DRL to obtain optimal solutions for complex real-time optimization problems, including demand response (DR), where traditional methods fail to meet time and complex requirements. Although DRL has shown good performance for particular use cases, most studies do not report the impacts of various DRL settings. This paper studies the DRL performance when addressing DR in home energy management systems (HEMSs). The trade-offs of various DRL configurations and how they influence the performance of the HEMS are investigated. The main elements that affect the DRL model training are identified, including state-action pairs, reward function, and hyperparameters. Various representations of these elements are analyzed to characterize their impact. In addition, different environmental changes and scenarios are considered to analyze the model's scalability and adaptability. The findings elucidate the adequacy of DRL to address HEMS challenges since, when appropriately configured, it successfully schedules from 73% to 98% of the appliances in different simulation scenarios and minimizes the electricity cost by 19% to 47%. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/en15218235
    http://hdl.handle.net/10576/37501
    Collections
    • Computer Science & Engineering [‎2485‎ items ]
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video