• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient multi-descriptor fusion for non-intrusive appliance recognition

    Thumbnail
    Date
    2020
    Author
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Consciousness about power consumption at the appliance level can assist user in promoting energy efficiency in households. In this paper, a superior non-intrusive appliance recognition method that can provide particular consumption footprints of each appliance is proposed. Electrical devices are well recognized by the combination of different descriptors via the following steps: (a) investigating the applicability along with performance comparability of several time-domain (TD) feature extraction schemes; (b) exploring their complementary features; and (c) making use of a new design of the ensemble bagging tree (EBT) classifier. Consequently, a powerful feature extraction technique based on the fusion of TD features is proposed, namely fTDF, aimed at improving the feature discrimination ability and optimizing the recognition task. An extensive experimental performance assessment is performed on two different datasets called the GREEND and WITHED, where power consumption signatures were gathered at 1 Hz and 44000 Hz sampling frequencies, respectively. The obtained results revealed prime efficiency of the proposed fTDF based EBT system in comparison with other TD descriptors and machine learning classifiers. 2020 IEEE
    DOI/handle
    http://hdl.handle.net/10576/37793
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video