• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time personalised energy saving recommendations

    Thumbnail
    Date
    2020
    Author
    Sardianos, Christos
    Chronis, Christos
    Varlamis, Iraklis
    Dimitrakopoulos, George
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The increased consumption of energy worldwide has boosted the interest of people for energy-efficient solutions at every level of daily life, from goods production and transportation to the use of household and office appliances. This gave rise to monitoring applications that monitor the daily user interaction with the electrical and electronic appliances, detect unnecessary or extensive usage and recommend corrective actions. In this direction, this work presents the anatomy of the Consumer Engagement Towards Energy Saving Behavior by means of Exploiting Micro Moments and Mobile Recommendation Systems (EM)3 recommendation engine, which supports household and office users with real-time personalized recommendations for avoiding unnecessary energy consumption and reducing the overall household (or office) energy footprint. The recommendation engine is based on a set of sensors that monitor energy usage, room occupancy, and environmental conditions inside and outside the living space, and a set of actuators that allow the remote control of devices, (e.g. on and off actions, set to eco or standby mode, etc.). The innovating feature of this recommendation engine is that it puts the human in the loop of energy efficiency by recommending actions at the right moment, in real-time, with user approval and rejection options. In addition, it provides savings related facts in order to increase the persuasiveness of the recommendations. Initial results show that users respond positively to personalized recommendations and are further persuaded when specific types of facts are chosen. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00072
    http://hdl.handle.net/10576/37848
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video