• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of using multiple fabric plies on the tensile behaviour of carbon textile reinforced mortar

    Thumbnail
    Date
    2020
    Author
    Younis, Adel
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    Recently, textile reinforced mortar (TRM) has emerged as a viable strengthening material for reinforced concrete (RC) and masonry structures. Understanding the TRM tensile behaviour is important to achieve an accurate design for TRM strengthening systems. This paper investigates the tensile properties of carbon-TRM composite with multiple fabric plies. Twenty TRM specimens (410 x 50 mm), which varied in the number of fabric plies (one/two/three/four), were prepared and tested in accordance with AC 434 provisions (clevis-grip mechanism). The results revealed a significance of the number of fabric plies on the tensile capacity as well as the failure behaviour of the TRM composite. The failure mode had changed from ductile fabric slippage (associated with up to 3 fabric plies) to brittle fabric delamination in carbon-TRM specimens when using 4 layers of fabric. As expected, the TRM tensile capacity had proportionally increased with the number of fabric plies. The effect of the number of fabric plies was less significant (within 20%), though, on the ultimate tensile stresses of the impregnated fabric. The results verified the established bilinear trend for TRM tensile stress-strain relationship that indicates two sequential phases, namely, noncracked/stiff and cracked-section phases. However, the TRM cracked tensile modulus had somewhat increased with an increase in the number of fabric plies.
    DOI/handle
    http://hdl.handle.net/10576/39117
    Collections
    • Civil and Environmental Engineering [‎873‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video