• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mitigation of railway-induced vibration by using subgrade stiffening

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2015-12
    Author
    Thompson, D.J.
    Jiang, J.
    Toward, M.G.R.
    Hussein, M.F.M.
    Dijckmans, A.
    Coulier, P.
    Degrande, G.
    Lombaert, G.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Railway-induced ground vibration is often associated with sites with soft ground. Stiffening of the subgrade beneath the railway track is one particular measure that has potential to reduce the vibration level at such sites. However, the mechanisms behind this reduction are not well understood. Here, the effects are examined in the context of two alternative approaches: (i) subgrade stiffening, where the soil directly under the track is stiffened, and (ii) stiff inclusions introduced at some depth beneath the track, sometimes known as 'wave impeding blocks'. The efficacy of the measures is considered for different ground types in a parametric study carried out using a 2.5D coupled finite-element/boundary-element methodology. The soil is considered to consist of a soft upper layer over a stiffer substratum; corresponding homogeneous grounds are also considered. With a 6. m wide, 1. m thick, concrete block directly under the track, the vibration between 16 and 50. Hz was found to be reduced by between 4 and 10. dB for ground with a 3. m deep soft upper layer. For a deeper soft layer the reductions were greater whereas, for a stiffer ground without the soft upper layer, the reductions in vibration from this block were negligible. Slightly smaller reductions in a similar frequency region were observed when the block was positioned 1. m below the surface, suggesting that, as with stiffening directly under the track, the reduction in vibration was primarily due to the increase of the effective stiffness of the soil beneath the track rather than the effective creation of a new, thinner soil layer. Jet grouting is considered as an alternative to concrete and, although it is found to be less effective due to its comparatively low stiffness, it may still be considered as a practical measure for existing tracks on soft soil sites. The reduction in vibration from this form of soil improvement with a depth of 3. m is similar to that for a 1. m thick concrete block. Finally, results are presented for three example sites with different soil properties which show similar trends.
    DOI/handle
    http://dx.doi.org/10.1016/j.soildyn.2015.09.005
    http://hdl.handle.net/10576/3956
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video