• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stabilized Octahedral Frameworks in Layered Double Hydroxides by Solid-Solution Mixing of Transition Metals

    Thumbnail
    Date
    2017
    Author
    Lee, Hyeon Jeong
    Lim, Soo Yeon
    Chae, Keun Hwa
    Park, Sung Hyeon
    Chung, Kyung Yoon
    Deniz, Erhan
    Choi, Jang Wook
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Pseudocapacitors have received considerable attention, as they possess advantages of both rechargeable batteries and electric double layer capacitors. Among various active materials for pseudocapacitors, α-layered double hydroxides (α-TM(OH)2, TM = transition metal) are promising due to their high specific capacities. Yet, irreversible α-to-β phase transitions of α-TM(OH)2 hinder their long-term cyclability, particularly when the TM is nickel. Here, it is reported that binary TM ion mixing can overcome the limited cycle lives of α-TM(OH)2 by stabilizing the octahedral frameworks of α-TM(OH)2. In particular, an α-TM(OH)2 with equal amounts of nickel and cobalt exhibits long-term capacity retention (89.0% after 2000 cycles) and specific capacity (206 mA h g−1), which are better than those of individual TM counterparts. A series of analyses reveals that the improved performances originate from the synergistic effects between the TM ions; the preferred trivalent state of cobalt ions stabilizes the octahedral framework by accommodating the detrimental Jahn–Teller distortion of Ni3+. The stabilized framework also widens the redox swing range of the nickel up to 4+, thus, increasing the specific capacity of the corresponding α-TM(OH)2. This study indicates that proper mixing of TMs is a prolific approach in enhancing the vital properties of α-TM(OH)2, a promising family of pseudocapacitor materials.
    DOI/handle
    http://dx.doi.org/10.1002/adfm.201605225
    http://hdl.handle.net/10576/40279
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video