• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data-Driven Load Frequency Control Based on Multi-Agent Reinforcement Learning With Attention Mechanism

    Thumbnail
    Date
    2022-01-01
    Author
    Yang, Fan
    Huang, Dong Hua
    Li, Dongdong
    Lin, Shunfu
    Muyeen, S. M.
    Zhai, Haibao
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the massive penetration of renewable energy, traditional reinforcement learning algorithms suffer from slow convergence and area control error (ACE) in interconnected power systems. This paper proposes data-driven load frequency control (LFC) based on multi-agent reinforcement learning with attention mechanism in interconnected power systems. It can be divided into two phases; in the centralized training, the agents are trained by an experience replay mechanism; in the decentralized execution, the trained agent automatically regulates the generation power to control the load frequency by real-time access to the grid data in the area. The agent can selectively focus on specific information in the environment by introducing a criticism network with an attention mechanism. The attention mechanism can reduce the training time for reinforcement learning while improving control performance under disturbance. A novel reward function based on a cooperation mechanism is used to score the performance of agent, which can guide the reinforcement learning algorithm to reduce the ACE of each area simultaneously. The proposed method is validated by the IEEE three-area interconnected power system, and it is concluded that the method can reduce the ACE caused by load and renewable power disturbances, and greatly reduce the training time of the algorithm.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144075792&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TPWRS.2022.3223255
    http://hdl.handle.net/10576/40348
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video