• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Incentivized and Optimized Dynamic Mechanism for Demand Response for Managing Voltage in Distribution Networks

    Thumbnail
    View/Open
    An Incentivized and Optimized Dynamic Mechanism for Demand Response for Managing Voltage in Distribution Networks.pdf (3.815Mb)
    Date
    2022-01-01
    Author
    Rahman, Md Moktadir
    Arefi, Ali
    Shafiullah, G. M.
    Hettiwatte, Sujeewa
    Azizivahed, Ali
    Muyeen, S. M.
    Islam, Md Rabiul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The voltage regulation in distribution networks is one of the major obstacles when increasing the penetration of distributed generators (DGs) such as solar photovoltaics (PV), especially during cloud transients, causing potential stress on network voltage regulations. Residential demand response (DR) is one of the cost-effective solutions for voltage management in distribution networks. However, the main barriers of DR implementation are the complexities of controlling a large number and different types of residential loads, satisfying customers' preferences and providing them fair incentives while identifying the optimum DR implementation locations and sizing as well as cooperating with the existing network equipment for the effective voltage management in the networks. A holistic and practical approach of DR implementation is missing in the literature. This study proposes a dynamic fair incentive mechanism using a multi-scheme load control algorithm for a large number of DR participants coordinating with the existing network equipment for managing voltage at medium voltage (MV) networks. The multi-scheme load control is comprised of short-interval (10-minute) and long-interval (2-hour) DR schemes. The dynamic incentive rates are optimized based on the energy contribution of DR participating consumers, their influence on the network voltage and total power loss improvement. The proposed method minimizes the DR implementation cost and size, fairly incentivizes the consumers participating in the DR and priorities their consumption preferences while reduces the network power losses and DGs' reactive power contributions to effectively manage the voltage in the MV networks. An improved hybrid particle swarm optimization algorithm (IHPSO) is proposed for the load controller to provide fast convergence and robust optimization results. The proposed approach is comprehensively tested using the IEEE 33-bus and IEEE 69-bus networks with several scenarios considering a large number of DR participants coordinated with the DGs and on-load tap changer (OLTC) in the networks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137945133&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3204618
    http://hdl.handle.net/10576/40409
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video