• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A component map tuning method for performance prediction and diagnostics of gas turbine compressors

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-12
    Author
    Tsoutsanis, E.
    Meskin, N.
    Benammar, M.
    Khorasani, K.
    Metadata
    Show full item record
    Abstract
    In this paper, a novel compressor map tuning method is developed with the primary objective of improving the accuracy and fidelity of gas turbine engine models for performance prediction and diagnostics. A new compressor map fitting and modeling method is introduced to simultaneously determine the best elliptical curves to a set of compressor map data. The coefficients that determine the shape of the compressor map curves are analyzed and tuned through a multi-objective optimization scheme in order to simultaneously match multiple sets of engine performance measurements. The component map tuning method, that is developed in the object oriented Matlab Simulink environment, is implemented in a dynamic gas turbine engine model and tested in off-design steady state and transient as well as degraded operating conditions. The results provided demonstrate and illustrate the capabilities of our proposed method in refining existing engine performance models to different modes of the gas turbine operation. In addition, the excellent agreement between the injected and the predicted degradation of the engine model demonstrates the potential of the proposed methodology for gas turbine diagnostics. The proposed method can be integrated with the performance-based tools for improved condition monitoring and diagnostics of gas turbine power plants.
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2014.08.115
    http://hdl.handle.net/10576/4086
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video