• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in ?-cyclodextrin nano-cavity

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-10
    Author
    Bani-Yaseen, A.D.
    Mo'Ala, A.
    Metadata
    Show full item record
    Abstract
    In the present work the inclusion complexation of three sulfonamide (SA) drugs, namely sulfisoxazole (SSX), sulfamethizole (SMZ), and Sulfamethazine (STM) with β-cyclodextrin (β-CD) has been investigated using UV–Vis spectroscopy, DSC, 1H NMR spectroscopy, and molecular modeling methods. The binding constant (Kb) of SA:β-CD inclusion complexation was determined via applying the modified form of Benesi–Hildebrand equation employing the changes in absorbance at . Obtained results revealed that SA drugs form 1:1 inclusion complex with β-CD with Kb of 650, 1532, 714 M−1 at 25 °C for SSX, SMZ, and STM, respectively. The UV–Vis absorption spectra displayed solvatochromic behavior of bathochromic shift with decreasing solvent polarity that in turn is good agreement with their behavior in the presence of β-CD in terms of environment polarity dependency. The inclusion complex formation between β-CD and tested SA drugs in liquid and solid states was confirmed by 1H NMR and DSC, respectively. Using semi-empirical quantum chemistry methods at PM3 theoretical level, inclusion complexes’ structures as well as energetic and thermodynamic parameters of encapsulation were elucidated. Obtained results revealed that the encapsulation is favorably energetic and enthalpic in nature with the inclusion of the aniline moiety through the wide rim side of β-CD nano-cavity. Further, molecular modeling revealed that β-CD encapsulation of SA drugs reduced their (EHOMO − ELUMO) gap.
    DOI/handle
    http://dx.doi.org/10.1016/j.saa.2014.04.136
    http://hdl.handle.net/10576/4123
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video