• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals

    Thumbnail
    View/Open
    bioengineering-10-00167.pdf (1.857Mb)
    Date
    2023
    Author
    Shuzan, Md N.
    Chowdhury, Moajjem H.
    Chowdhury, Muhammad E. H.
    Murugappan, Murugappan
    Hoque Bhuiyan, Enamul
    Arslane Ayari, Mohamed
    Khandakar, Amith
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research presents a novel method of estimating RR and SpO2 using machine learning models that incorporate PPG signal features. A number of established methods are used to extract meaningful features from PPG. A feature selection approach was used to reduce the computational complexity and the possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from which the most appropriate regression model was selected. The Gaussian process regression model outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE) for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle. 2023 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/bioengineering10020167
    http://hdl.handle.net/10576/41927
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video