• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Custom Hardware Architectures for Deep Learning on Portable Devices: A Review

    Thumbnail
    Date
    2022
    Author
    Zaman, Kh Shahriya
    Reaz, Mamun Bin Ibne
    Md Ali, Sawal Hamid
    Bakar, Ahmad Ashrif A
    Chowdhury, Muhammad Enamul Hoque
    Metadata
    Show full item record
    Abstract
    The staggering innovations and emergence of numerous deep learning (DL) applications have forced researchers to reconsider hardware architecture to accommodate fast and efficient application-specific computations. Applications, such as object detection, image recognition, speech translation, as well as music synthesis and image generation, can be performed with high accuracy at the expense of substantial computational resources using DL. Furthermore, the desire to adopt Industry 4.0 and smart technologies within the Internet of Things infrastructure has initiated several studies to enable on-chip DL capabilities for resource-constrained devices. Specialized DL processors reduce dependence on cloud servers, improve privacy, lessen latency, and mitigate bandwidth congestion. As we reach the limits of shrinking transistors, researchers are exploring various application-specific hardware architectures to meet the performance and efficiency requirements for DL tasks. Over the past few years, several software optimizations and hardware innovations have been proposed to efficiently perform these computations. In this article, we review several DL accelerators, as well as technologies with emerging devices, to highlight their architectural features in application-specific integrated circuit (IC) and field-programmable gate array (FPGA) platforms. Finally, the design considerations for DL hardware in portable applications have been discussed, along with some deductions about the future trends and potential research directions to innovate DL accelerator architectures further. By compiling this review, we expect to help aspiring researchers widen their knowledge in custom hardware architectures for DL. 2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TNNLS.2021.3082304
    http://hdl.handle.net/10576/41939
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video