• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HipXNet: Deep Learning Approaches to Detect Aseptic Loos-Ening of Hip Implants Using X-Ray Images

    Thumbnail
    View/Open
    HipXNet_Deep_Learning_Approaches_to_Detect_Aseptic_Loos-Ening_of_Hip_Implants_Using_X-Ray_Images.pdf (2.128Mb)
    Date
    2022
    Author
    Rahman, Tawsifur
    Khandakar, Amith
    Islam, Khandaker Reajul
    Soliman, Md Mohiuddin
    Islam, Mohammad Tariqul
    Elsayed, Ahmed
    Qiblawey, Yazan
    Mahmud, Sakib
    Rahman, Ashiqur
    Musharavati, Farayi
    Zalnezhad, Erfan
    Chowdhury, Muhammad E. H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Radiographic images are commonly used to detect aseptic loosening of the hip implant in patients with total hip replacement (THR) surgeries. These techniques of manual assessment by medical professionals can suffer from the drawback of low accuracy, poor inter-observer reliability, and delays due to the unavailability of experienced clinicians. Thus, the paper provides a reliable Deep Convolutional Neural Networks (DCNNs) based novel stacking approach (HipXNet) for detecting loosening of the hip implant using X-ray images. Two major investigations were done in this study. Firstly, the performance of four different state-of-the-art object detection YOLOv5 models was evaluated to detect the implant region from the hip X-ray images. Secondly, the study developed a stacking classifier using three different Convolutional neural networks (CNN) models to classify aseptic hip loosening and compared the performance with eight different state-of-the-art CNN networks. Moreover, one publicly accessible dataset with two sub-sets was created for these two experiments, where 200 hip implant X-ray images were collected and annotated by two expert radiologists for implant detection and 206 hip implant X-ray images were collected for loosening detection. YOLOv5m model outperformed the other variants of YOLOv5 to detect the implant region with the precision, recall, mean average precision (mAP)0.5, mAP0.5-0.95 of 100%, 100%, 100%, and 87.8%, respectively. Densenet201 CNN model outperformed other CNN models with the accuracy, precision, sensitivity, F1 score, and specificity of 94.66%, 94.66%, 94.66%, 94.66%, and 94.5%, respectively while the stacking technique with Random Forest meta learner classifier produced the best performance with the accuracy, precision, sensitivity, F1 score and specificity of 96.11%, 96.42%, 96.42%, 96.42%, and 96.74% respectively for loosening detection. The reliability of the performance was confirmed by the popular Score-CAM visualization. This study can help in the early and fast identification of hip implant loosening with the help of simple X-ray images and computed aided diagnosis. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3173424
    http://hdl.handle.net/10576/41964
    Collections
    • Electrical Engineering [‎2840‎ items ]
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video