• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microwave brain imaging system to detect brain tumor using metamaterial loaded stacked antenna array

    Thumbnail
    View/Open
    s41598-022-20944-8.pdf (20.46Mb)
    Date
    2022
    Author
    Hossain, Amran
    Islam, Mohammad Tariqul
    Beng, Gan Kok
    Kashem, Saad Bin Abul
    Soliman, Mohamed S.
    Misran, Norbahiah
    Chowdhury, Muhammad E. H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this paper, proposes a microwave brain imaging system to detect brain tumors using a metamaterial (MTM) loaded three-dimensional (3D) stacked wideband antenna array. The antenna is comprised of metamaterial-loaded with three substrate layers, including two air gaps. One 1 x 4 MTM array element is used in the top layer and middle layer, and one 3 x 2 MTM array element is used in the bottom layer. The MTM array elements in layers are utilized to enhance the performance concerning antenna's efficiency, bandwidth, realized gain, radiation directionality in free space and near the head model. The antenna is fabricated on cost-effective Rogers RT5880 and RO4350B substrate, and the optimized dimension of the antenna is 50 x 40 x 8.66 mm3. The measured results show that the antenna has a fractional bandwidth of 79.20% (1.37-3.16 GHz), 93% radiation efficiency, 98% high fidelity factor, 6.67 dBi gain, and adequate field penetration in the head tissue with a maximum of 0.0018 W/kg specific absorption rate. In addition, a 3D realistic tissue-mimicking head phantom is fabricated and measured to verify the performance of the antenna. Later, a nine-antenna array-based microwave brain imaging (MBI) system is implemented and investigated by using phantom model. After that, the scattering parameters are collected, analyzed, and then processed by the Iteratively Corrected delay-multiply-and-sum algorithm to detect and reconstruct the brain tumor images. The imaging results demonstrated that the implemented MBI system can successfully detect the target benign and malignant tumors with their locations inside the brain. 2022, The Author(s).
    DOI/handle
    http://dx.doi.org/10.1038/s41598-022-20944-8
    http://hdl.handle.net/10576/41973
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video