• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    "Quad-band flexible magnesium zinc ferrite (MgZnFe2O4)-based double negative metamaterial for microwave applications"

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Rahman, Md Atiqur
    Islam, Mohammad Tariqul
    Singh, Mandeep Singh Jit
    Chowdhury, Muhammad EH.
    Samsuzzaman, Md
    Metadata
    Show full item record
    Abstract
    This article presents vertically coupled, rectangular complementary split-ring resonator-shaped quad-band double-negative (DNG) metamaterial unit cells, that is, having both negative permittivity and permeability, which redirect negative refractive and also are not found in nature. The metamaterial is fabricated on magnesium zinc ferrite-based flexible microwave substrates, and the flexible substrates are chosen with two different concentrations of magnesium (Mg) denoted by Mg30 and Mg50 for 30% and 50% of Mg, which possess dielectric constants of 4.32 and 3.15 and loss tangents of 0.003 and 0.005, respectively. The proposed metamaterials are demonstrated by utilizing the CST microwave simulator, and their effective parameters are extracted according to the Nicolson-Ross-Wire method. With Mg30, the prepared, flexible metamaterial shows measured resonances at 3.70 GHz, 7 GHz, 8.60 GHz, and 9.78 GHz, whereas with Mg50 it shows the measured resonances at 4.10 GHz, 7.70 GHz, 9.33 GHz, and 10.62 GHz. Very good effective medium ratios (EMR) along with DNG properties are obtained, namely 6.5 and 5.85 for Mg30 and Mg50, respectively, with a physical dimension of 12.5 x 9.5 mm2 for both of the unit cells. Also, the electric field, magnetic field, and surface current distribution at different resonances and the polarization insensitivity at different polarization angles were observed. Thus, the designed new flexible substrate microwave materials based on DNG metamaterials are potential candidates for S-, C- and X-band applications, as well as for flexible microwave technologies. 2021 The Physical Society of the Republic of China (Taiwan)
    DOI/handle
    http://dx.doi.org/10.1016/j.cjph.2021.02.014
    http://hdl.handle.net/10576/41980
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video