• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Non-Invasive Estimation of Respiration Rate from Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model

    Thumbnail
    View/Open
    A_Novel_Non-Invasive_Estimation_of_Respiration_Rate_From_Motion_Corrupted_Photoplethysmograph_Signal_Using_Machine_Learning_Model.pdf (4.040Mb)
    Date
    2021
    Author
    Shuzan, Md. Nazmul Islam
    Chowdhury, Moajjem Hossain
    Hossain, Md. Shafayet
    Chowdhury, Muhammad E. H.
    Reaz, Mamun Bin Ibne
    Uddin, Mohammad Monir
    Khandakar, Amith
    Mahbub, Zaid Bin
    Ali, Sawal Hamid Md.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Respiratory ailments such as asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and lung cancer are life-Threatening. Respiration rate (RR) is a vital indicator of the wellness of a patient. Continuous monitoring of RR can provide early indication and thereby save lives. However, a real-Time continuous RR monitoring facility is only available at the intensive care unit (ICU) due to the size and cost of the equipment. Recent researches have proposed Photoplethysmogram (PPG) and/ Electrocardiogram (ECG) signals for RR estimation however, the usage of ECG is limited due to the unavailability of it in wearable devices. Due to the advent of wearable smartwatches with built-in PPG sensors, it is now being considered for continuous monitoring of RR. This paper describes a novel approach for RR estimation using motion artifact correction and machine learning (ML) models with the PPG signal features. Feature selection algorithms were used to reduce computational complexity and the chance of overfitting. The best ML model and the best feature selection algorithm combination were fine-Tuned to optimize its performance using hyperparameter optimization. Gaussian Process Regression (GPR) with Fit a Gaussian process regression model (Fitrgp) feature selection algorithm outperformed all other combinations and exhibits a root mean squared error (RMSE), mean absolute error (MAE), and two-standard deviation (2SD) of 2.63, 1.97, and 5.25 breaths per minute, respectively. Patients would be able to track RR at a lower cost and with less inconvenience if RR can be extracted efficiently and reliably from the PPG signal. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3095380
    http://hdl.handle.net/10576/41988
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video