• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A YOLOv3 Deep Neural Network Model to Detect Brain Tumor in Portable Electromagnetic Imaging System

    Thumbnail
    View/Open
    A_YOLOv3_Deep_Neural_Network_Model_to_Detect_Brain_Tumor_in_Portable_Electromagnetic_Imaging_System.pdf (2.646Mb)
    Date
    2021
    Author
    Hossain, Amran
    Islam, Mohammad Tariqul
    Islam, Mohammad Shahidul
    Chowdhury, Muhammad E. H.
    Almutairi, Ali F.
    Razouqi, Qutaiba A.
    Misran, Norbahiah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper presents the detection of brain tumors through the YOLOv3 deep neural network model in a portable electromagnetic (EM) imaging system. YOLOv3 is a popular object detection model with high accuracy and improved computational speed. Initially, the scattering parameters are collected from the nine-antenna array setup with a tissue-mimicking head phantom, where one antenna acts as a transmitter and the other eight antennas act as receivers. The images are then reconstructed from the post-processed scattering parameters by applying the modified delay-multiply-and-sum algorithm that contains 416 x 416 pixels. Fifty sample images are collected from the different head regions through the EM imaging system. The images are later augmented to generate a final image data set for training, validation, and testing, where the data set contains 1000 images, including fifty samples with a single and double tumor. 80% of the images are utilized for training the network, whereas 10% are used for validation, and the rest 10% are utilized for testing purposes. The detection performance is investigated with the different image data sets. The achieved detection accuracy and F1 scores are 95.62% and 94.50%, respectively, which ensure better detection accuracy. The training accuracy and validation losses are 96.74% and 9.21%, respectively. The tumor detection with its location in different cases from the testing images is evaluated through YOLOv3, which demonstrates its potential in the portable electromagnetic head imaging system. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3086624
    http://hdl.handle.net/10576/41989
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video