• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Diabetic Sensorimotor Polyneuropathy Severity Classification Using Adaptive Neuro Fuzzy Inference System

    Thumbnail
    View/Open
    Diabetic_Sensorimotor_Polyneuropathy_Severity_Classification_Using_Adaptive_Neuro_Fuzzy_Inference_System.pdf (1.646Mb)
    Date
    2021
    Author
    Haque, Fahmida
    Reaz, Mamun B. I.
    Chowdhury, Muhammad E. H.
    Hashim, Fazida H.
    Arsad, Norhana
    Ali, Sawal H. M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Diabetic sensorimotor polyneuropathy (DSPN) is an early indicator for non-healing diabetic wounds and diabetic foot ulcers, which account for one of the most common complications of diabetes, leading to increased healthcare cost, decreased quality of life, infections, amputations, and death. Early detection and intelligent classification tools for DSPN can allow correct diagnosis and treatment of painful diabetic neuropathy as well as a timely intervention to prevent foot ulceration, amputation, and other diabetic complications. Hence, to successfully mitigate the prevalence of DSPN, this study aims to depict an intelligent DSPN severity classifier using Adaptive Neuro Fuzzy Inference System (ANFIS). Michigan Neuropathy Screening Instrumentation (MNSI) was considered as the input for identification and stratification of DSPN. Patients have been classified into four classes: Absent, Mild, Moderate, and Severe. The model accuracy was validated with the results from different machine learning algorithms. The Accuracy, sensitivity, and specificity of the ANFIS model are 91.17±1.18%, 92±2.26%, 96.72±0.93%, respectively. The proposed classifier was used to classify the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trial patients and observed that in the first, eighth, and nineteenth EDIC years 18.31%, 39.45%, and 59.14% patients had different levels of DSPN. This study also investigates the changes in muscle activity during gait from three different lower limb muscles (vastus lateralis (VL), tibialis anterior (TA), and gastrocnemius medialis (GM)) electromyography (EMG) of DSPN patients with different severity levels classified by the proposed classifier and observed that VL and GM muscles show an increase in delay for activation peak and decrease in peak magnitude during gait with the progression of DSPN severity. Based on this observation, the ANFIS model was trained using the extracted EMG features for DSPN severity stratification and showed ...
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3048742
    http://hdl.handle.net/10576/41992
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video