• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal analysis of Si-IGBT based power electronic modules in 50kW traction inverter application

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2772671123000074-main.pdf (9.628Mb)
    Date
    2023
    Author
    Shahjalal, Mohammad
    Shams, Tamanna
    Hossain, Sadat Bin
    Rishad Ahmed, Md.
    Ahsan, Mominul
    Haider, Julfikar
    Goswami, Rajib
    Alam, Syed Bahauddin
    Iqbal, Atif
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Estimation of accurate IGBT junction temperature is crucial for reliability assessment. The well-known RC lumped approach can help predict junction temperature. However, this method suffers from inaccuracy while characterizing the thermal behaviour of several IGBT modules mounted to the liquid-cooled heatsink. Specifically, the thermal challenge originates from the thermal cross-coupling and module-to-module heat spreading and the converter cooling condition. This article demonstrates a methodology to study the impact of heat spreading, thermal interface material, and massive size liquid cold-plate on the overall thermal behaviour. A case study of 50 kW traction inverter is chosen to demonstrate the benefit of early assessment of electro-thermal simulation before making costly prototype design. Power loss is initially estimated using an analytical loss model and later the estimated power loss is used in FEA (Finite Element Analysis) thermal model. This paper also compares the performance of single-phase and two-phase liquid cooling and various thermal interface materials (TIM) to determine which type of cooling system and TIM is most suitable for real applications. Simulation results suggest that combination of two-phase liquid cooling and TIM can improve the thermal performance and reduce junction temperature by 4.5%, 4.2%, 4.6% for the traction power load 30 kW, 40 kW, and 50 kW, respectively. The proposed methodology can be used as useful reference guidance for thermal design and modelling of IGBT based power converter applications. 2023 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.prime.2023.100112
    http://hdl.handle.net/10576/43063
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video