• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Utilization of EV Charging Station in Demand Side Management Using Deep Learning Method

    Thumbnail
    View/Open
    Utilization_of_EV_Charging_Station_in_Demand_Side_Management_Using_Deep_Learning_Method.pdf (1.874Mb)
    Date
    2023
    Author
    Hafeez, Abdul
    Alammari, Rashid
    Iqbal, Atif
    Metadata
    Show full item record
    Abstract
    Conventional energy sources are a major source of pollution. Major efforts are being made by global organizations to reduce CO2 emissions. Research shows that by 2030, EVs can reduce CO2 emissions by 28%. However, two major obstacles affect the widespread adoption of electric vehicles: the high cost of EVs and the lack of charging stations. This paper presents a comprehensive data-driven approach based demand-side management for a solar-powered electric vehicle charging station connected to a microgrid. The proposed approach utilizes a solar-powered electric vehicle charging station to compensate for the energy required during peak demand, which reduces the utilization of conventional energy sources and shortens the problem of fewer EVCS in the current scenario. PV power stations, commercial loads, residential loads, and electric vehicle charging stations were simulated using the collected real-time data. Furthermore, a deep learning approach was developed to control the energy supply to the microgrid and to charge the electric vehicle from the grid during off-peak hours. Furthermore, two different machine learning approaches were compared to estimate the state of charge estimation of an energy storage system. Finally, the proposed framework of the demand management system was executed for a case study of 24 hours. The results reflect that peak demand has been compensated with the help of an electric vehicle charging station during peak hours. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3238667
    http://hdl.handle.net/10576/43074
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video