• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermo-economic assessment of forward osmosis as pretreatment to boost the performance and sustainability of multi-effect distillation for seawater desalination

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Ortega-Delgado, B.
    Palenzuela, P.
    Altaee, Ali
    Alarcón-Padilla, D.-C.
    Hawari, A.H.
    Zaragoza, G.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This work presents the thermodynamic and techno-economic assessment of a forward osmosis – multi-effect distillation (FO-MED) system able to improve the thermal performance of the MED seawater desalination process and reduce its environmental impact. Energy, exergy and techno-economic analyses have been carried out to identify the best boundary conditions that enhance the process efficiency and water cost, predicting the scale formation with the Ryznar index. Results show that using FO pretreatment in a 100 m3/d MED plant of 8 effects at 65 °C allows increasing the heating steam temperature up to 100 °C and the number of effects to 16 without increasing the risk of scaling. This results in 44 % reduction of the specific thermal energy consumption and 21 % decrease in the specific heat transfer area. The volume of saline water rejected to the sea is reduced 40 % and the water footprint 36 %. The exergy analysis reveals that the MED is the component with the highest exergy destruction. Finally, the levelized cost of water of the FO-MED is higher (7.6 $/m3) than the standalone MED process (4.6 $/m3). If high-performing and cost-effective membranes are used, the product cost could be reduced 33 % (5.1 $/m3).
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2022.115989
    http://hdl.handle.net/10576/43357
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video