• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental validation of a numerical model for the ground vibration from trains in tunnels

    Thumbnail
    View/Open
    000344.pdf (652.3Kb)
    Date
    2015-06-01
    Author
    Jin, Qiyun
    Thompson, David
    Lurcock, Daniel
    Toward, Martin
    Ntotsios, Evangelos
    Koroma, Samuel
    Hussein, Mohammed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ground vibration and ground-borne noise from trains in tunnels are attracting increasing attention from researchers and engineers. They are important environmental issues related with the operation of underground networks in intensively-populated urban areas. An accurate prediction for this train-induced vibration can be very helpful in the implementation of countermeasures to achieve the control of vibration or noise levels. In this paper, a numerical model is introduced based on the 2.5D Finite Element / Boundary Element methodology. The part of the metro line concerned is built with a cast-iron tunnel lining. The tunnel structure and the track are modelled with finite elements while the ground is modelled using boundary elements. Then the 2.5D track-tunnel-ground model is coupled with a multiple-rigid body vehicle model to determine the response caused by the passage of a train. To validate the prediction results, measurements have been carried out of the vibration of the rail, tunnel invert, tunnel wall and ground surface when the train is passing by and these are compared with the predictions with good agreement. Copyright © (2015) by EAA-NAG-ABAV, ISSN 2226-5147 All rights reserved.
    DOI/handle
    http://hdl.handle.net/10576/43702
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video