• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of soaking process on CH4-CO2 replacement efficiency for hydrate-bearing sediments

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0920410520308330-main.pdf (4.284Mb)
    Date
    2021
    Author
    Ryou, Jae Eun
    Al-Raoush, Riyadh I.
    Alshibli, Khalid
    Lee, Joo Yong
    Jung, Jongwon
    Metadata
    Show full item record
    Abstract
    CH4-CO2 replacement method has the advantages of sequestering carbon dioxide and sediment stability compared to other methods such as depressurization and thermal stimulation. However, the production efficiency using CH4-CO2 replacement method is lower than any other method. In this study, effects of soaking process on CH4-CO2 replacement efficiency were determined. The soaking process was the time to close all valves for the enhancement of CH4-CO2 reaction which resulted in the long reaction time between the injected CO2 and methane hydrate and consisted of the 1st and the 2nd production with soaking time after dynamic replacement. Results showed that total replacement efficiency increased with increasing number of soaking processes and more soaking time. The increasing rate of replacement efficiency in the first soaking process was higher than that in the second process. However, the soaking process showed the disadvantage that the total production time increased with increasing soaking time and process, which could result in the production cost increase. Therefore, appropriate soaking time and number of soaking processes are required to improve the replacement efficiency considering production cost. 2020 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.petrol.2020.107772
    http://hdl.handle.net/10576/43859
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Doubly dual nature of ammonium-based ionic liquids for methane hydrates probed by rocking-rig assembly 

      Tariq, Mohammad; Connor, Eihmear; Thompson, Jillian; Khraisheh, Majeda; Atilhan, Mert; Rooney, David... more authors ... less authors ( Royal Society of Chemistry , 2016 , Article)
      This work presents a systematic study of methane hydrate inhibition in the presence of five structurally variable ionic liquids (ILs) belonging to the ammonium family—viz., tetra-alkylammonium acetate (TMAA), choline ...
    • Thumbnail

      Dynamic 3D imaging of gas hydrate kinetics using synchrotron computed tomography 

      Jarrar, Zaher; Al-Raoush, Riyadh; Alshibli, Khalid; Jung, Jongwon ( EDP Sciences , 2020 , Conference)
      The availability of natural gas hydrates and the continuing increase in energy demand, motivated researchers to consider gas hydrates as a future source of energy. Fundamental understanding of hydrate dissociation kinetics ...
    • Thumbnail

      Experimental and DFT Approach on the Determination of Natural Gas Hydrate Equilibrium with the Use of Excess N2 and Choline Chloride Ionic Liquid as an Inhibitor 

      Tariq, Mohammad; Atilhan, Mert; Khraisheh, Majeda; Othman, Enas; Castier, Marcelo; García, Gregorio; Aparicio, Santiago; Tohidi, Bahman... more authors ... less authors ( American Chemical Society , 2016 , Article)
      This work presents the characterization of hydrate-forming conditions of a Qatari natural gas-type mixture, QNG-S1, obtained using two different experimental methods, namely, a benchtop reactor and a gas hydrate autoclave. ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video