• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new permanent-magnet vernier machine using a single layer winding layout for electric vehicles

    Thumbnail
    Date
    2014
    Author
    Abdel-Khalik, A.S.
    Ahmed, Shehab
    Massoud, A.
    Metadata
    Show full item record
    Abstract
    Permanent magnet (PM) vernier machines have shown promise in electric vehicle applications as they offer high torque density and low speed/high torque operation by introducing flux-modulation poles that modulate the high-speed armature rotating field and the low-speed PM rotor field. The non-overlap single layer windings provide a cost-effective design variation that eases manufacturing, reduces torque ripples, enhances voltage quality, and provides fault tolerant capability due to the negligible coupling between phases. The performance of such machines depends mainly on the proper selection of the pole and slot numbers. The preferred slots per phase per pole (SPP) ratios eliminate the effect of low order harmonics in the stator MMF, and thereby the vibration and stray loss are reduced. This paper proposes a new three-phase winding configuration based on the 20 slots/18 poles five-phase PM vernier machine which exploits the advantages of multiphase machine, including higher torque density and lower torque ripples, while fed from an off-the-shelf three-phase power converter. 2D Finite element analysis is used to verify the proposed design.
    DOI/handle
    http://dx.doi.org/10.1109/ISIE.2014.6864698
    http://hdl.handle.net/10576/4458
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video