A general multicompartment lung mechanics model with nonlinear resistance and compliance respiratory parameters
Abstract
In this paper, we develop a nonlinear multicompartment lung mechanics model that accounts for nonlinearities in both the airway resistances and the lung compliances. Many models assume that the airway resistances for a lung mechanics system are constant over the entire range of air flows, and hence, pressure losses due to the airway resistances are assumed to be linear functions of the air flows. In the development of our nonlinear multicompartment lung model, we assume that the resistive losses are characterized by a Rohrer-type model, which can more accurately capture resistive losses as a function of the flows. Several illustrative numerical examples for a two-compartment lung model are presented and the response of the multicompartment lung model with nonlinear resistances and nonlinear compliances is compared to that of a multicompartment lung model with linear resistances and nonlinear compliances.
Collections
- Electrical Engineering [2649 items ]