• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HLS based hardware acceleration on the zynq SoC: A case study for fall detection system

    Thumbnail
    Date
    2014
    Author
    Ali, Amine Ait Si
    Siupik, Marek
    Amira, Abbes
    Bensaali, Faycal
    Casaseca-De-La-Higuera, Pablo
    Metadata
    Show full item record
    Abstract
    Fall detection is a major problem in healthcare systems, especially for elderly people who are the most vulnerable. It is important to design and implement not only an accurate fall detection system (FDS) but also a system with a real-time response. The achievement of high accuracy and fast response time together allows the development of a system that helps saving lives, time and money in healthcare industry. This paper presents the design, simulation and implementation of a novel FDS using the Shimmer wearable sensor. The discrete wavelet transform (DWT) is applied for preprocessing the data coming from the Shimmer platform, principal component analysis (PCA) is used for dimensionality reduction and feature extraction and finally, a binary decision tree (DT) is utilized for classification purpose. The system is simulated in MATLAB prior to the implementation on the Zynq system-on-chip (SoC) for hardware acceleration. DWT is executed on the processing system (PS) of the Zynq platform in a software manner while PCA and DT are both implemented on the programmable logic (PL) for hardware acceleration. PCA and DT are developed in C and synthesized in Vivado high level synthesis (HLS) tool to transform the C based designed into a register transfer level (RTL) implementation. Various optimization techniques are explored in Vivado HLS. The performance of the FDS in terms of accuracy of the classifier is 88.4% while the overall resources used in PL of the Zynq vary between 2% and 23% depending on the running frequency and optimization technique used.
    DOI/handle
    http://dx.doi.org/10.1109/AICCSA.2014.7073266
    http://hdl.handle.net/10576/4572
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video