• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Hybrid EKF approach for state estimation in multi-scale nonlinear singularly perturbed systems

    Thumbnail
    Date
    2014
    Author
    Daroogheh, Najmeh
    Meskin, Nader
    Khorasani, Khorasani
    Metadata
    Show full item record
    Abstract
    In this paper a general framework is developed for state estimation in a class of nonlinear continuous-time singularly perturbed systems. Our approach is based on the hybrid extended Kalman filter in which observations are originated from discrete measurements. The developed framework is also extended to include linearization error in the observation equation as uncertainty in the estimation filter design. The boundedness of both a priori and a posteriori estimation error covariance matrices is considered as a criterion for the algorithm to have bounded estimation errors. As an approximation method for the estimation covariance matrices in the singularly perturbed system, the matched asymptotic series method is utilized to include the effects of initial conditions by approximating the boundary layer solution in order to attain more accurate filter gain approximation. The developed Hybrid Robust EKF (HREKF) strategy can be used as an estimation method for tracking the effects of hidden damage in a nonlinear system.
    DOI/handle
    http://dx.doi.org/10.1109/CDC.2014.7039520
    http://hdl.handle.net/10576/4602
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video