• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Powerline interference suppression of a textile-insulated capacitive biomedical sensor using digital filters

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263224122016220-main.pdf (17.80Mb)
    Date
    2023
    Author
    Ng, Charn Loong
    Bin Ibne Reaz, Mamun
    Bin Md Ali, Sawal Hamid
    Crespo, Maria Liz
    Cicuttin,
    res
    Hoque Chowdhury, Muhammad Enamul
    Kiranyaz, Serkan
    Kamal, Noorfazila Binti
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This research evaluated a textile-insulated capacitive (TEX-C) biomedical sensor insulated by six types of textile materials namely cotton, linen, rayon, nylon, polyester, and PVC-textile. Each textile material creates a unique skin-electrode capacitance and affected the susceptibility of the TEX-C biomedical sensor towards the 50 Hz powerline interference (PLI) and its harmonics. Designing versatile TEX-C biosensor hardware that can tolerate different textile insulators while maintaining an optimum signal measurement quality proves to be a significant challenge. Five digital filters such as notch filter, comb filter, discrete wavelet transform, undecimated wavelet transform, and normalized least mean squares adaptive filter were implemented to compare their performance in suppressing the 50 Hz PLI and its harmonics. The comb filter yielded the best results in suppressing the 50 Hz PLI and its harmonics below -130 dB while improving the correlation coefficient of the EMG signals measured by TEX-C biomedical sensors and the wet contact electrode.
    DOI/handle
    http://dx.doi.org/10.1016/j.measurement.2022.112425
    http://hdl.handle.net/10576/47887
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video