• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of seismic damage spectra using computational intelligence methods

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Gharehbaghi, Sadjad
    Gandomi, Mostafa
    Plevris, Vagelis
    Gandomi, Amir H.
    Metadata
    Show full item record
    Abstract
    Predicting seismic damage spectra, capturing both structural and earthquake features, is useful in performance-based seismic design and quantifying the potential seismic damage of structures. The objective of this paper is to accurately predict the seismic damage spectra using computational intelligence methods. For this purpose, an inelastic single-degree-of-freedom system subjected to a set of earthquake ground motion records is used to compute the (exact) spectral damage. The Park-Ang damage index is used to quantify the seismic damage. Both structural and earthquake features are involved in the prediction models where multi-gene genetic programming (MGGP) and artificial neural networks (ANNs) are applied. Common performance metrics were used to assess the models developed for seismic damage spectra, and indicated that their accuracy was higher than a corresponding model in the literature. Although the performance metrics revealed that the ANN model is more accurate than the MGGP model, the explicit MGGP-based mathematical model renders it more practical in quantifying the potential seismic damage of structures.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruc.2021.106584
    http://hdl.handle.net/10576/50173
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video