• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Dynamic Transit Signal Priority Optimization for Coordinated Traffic Networks Using Genetic Algorithms and Artificial Neural Networks

    Thumbnail
    Date
    2015-10-02
    Author
    Ghanim, Mohammad S.
    Abu-Lebdeh, Ghassan
    Metadata
    Show full item record
    Abstract
    Transit signal priority (TSP) has gained popularity in providing public transportation buses with preferential treatment at signalized intersections. Many studies have addressed its implementation in prompting enhanced public transportation service, such as reducing person delay and reducing transit travel time. However, most TSP implementations are done at the intersection level. Only a few studies have addressed the problem of integrating signal priority in coordinated real-time traffic signal control systems. A particular problem in this case is the uncertainty of predicting transit movements when considering the variability of dwell times at service stops. This study presents the development of a real-time traffic signal control integrating traffic signal timing optimization and TSP control using genetic algorithms (GA) and artificial neural networks (ANN) modeling. The GA is used to find near-optimal signal timings. Six different signal control systems were evaluated: fixed-time control with and without standard TSP, actuated signal control with and without standard TSP, real-time GA-based control without TSP, and real-time GA-based with advanced TSP logic. The standard TSP is implemented at the intersection level, by providing either early green (red truncation) or green extension strategies whenever a bus exists. A traffic signal control system that incorporates GA to optimize the fitness function and ANN for transit travel time prediction is developed. A microscopic simulation environment using VISSIM 4.3 simulation environment is used to test the previously mentioned six traffic control systems. The simulation results show that the proposed control system can reduce transit vehicle delay and improve schedule adherence. The reductions in delay and schedule adherence are statistically significant.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947615980&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/15472450.2014.936292
    http://hdl.handle.net/10576/51135
    Collections
    • Civil and Environmental Engineering [‎873‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video