• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Charge-transfer complexes formed in the reaction of 2-amino-4-ethylpyridine with π-electron acceptors

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016-02-15
    Author
    AlQaradawi, Siham Y.
    Mostafa, Adel
    Bengali, A.A.
    Metadata
    Show full item record
    Abstract
    Molecular charge-transfer complexes (CT) of electron donor 2-amino-4-ethylpyridine (2A4EPy) with π-acceptors tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) have been studied spectrophotometrically in chloroform at 25 °C. These were investigated through electronic, infrared, mass spectra and thermal measurements as well as elemental analysis. All formed complexes exhibit well resolved charge-transfer bands in the regions where neither donor nor acceptors have any absorption. The obtained results show that the formed solid CT-complexes have the structures [(2A4EPy)(TCNE)2], [(2A4EPy)2(DDQ)] and [(2A4EPy)2(TBCHD)] for 2-amino-4-ethylpyridine in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient εC.T, free energy change ΔG0, CT energy ECT, ionization potential Ip and oscillator strength ƒ have been calculated for these three CT-complexes.
    URI
    http://www.sciencedirect.com/science/article/pii/S0022286015304002
    DOI/handle
    http://dx.doi.org/10.1016/j.molstruc.2015.10.100
    http://hdl.handle.net/10576/5267
    Collections
    • Chemistry & Earth Sciences [‎614‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video