• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IDRISI-RE: A generalizable dataset with benchmarks for location mention recognition on disaster tweets

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0306457323000778-main.pdf (1.649Mb)
    Date
    2023
    Author
    Suwaileh, Reem
    Elsayed, Tamer
    Imran, Muhammad
    Metadata
    Show full item record
    Abstract
    While utilizing Twitter data for crisis management is of interest to different response authorities, a critical challenge that hinders the utilization of such data is the scarcity of automated tools that extract geolocation information. The limited focus on Location Mention Recognition (LMR) in tweets, specifically, is attributed to the lack of a standard dataset that enables research in LMR. To bridge this gap, we present IDRISI-RE, a large-scale human-labeled LMR dataset comprising around 20.5k tweets. The annotated location mentions within the tweets are also assigned location types (e.g., country, city, street, etc.). IDRISI-RE contains tweets from 19 disaster events of diverse types (e.g., flood and earthquake) covering a wide geographical area of 22 English-speaking countries. Additionally, IDRISI-RE contains about 56.6k automatically-labeled tweets that we offer as a silver dataset. To highlight the superiority of IDRISI-RE over past efforts, we present rigorous analyses on reliability, consistency, coverage, diversity, and generalizability. Furthermore, we benchmark IDRISI-RE using a representative set of LMR models to provide the community with baselines for future work. Our extensive empirical analysis shows the promising generalizability of IDRISI-RE compared to existing datasets. We show that models trained on IDRISI-RE better tackle domain shifts and are less susceptible to change in geographical areas.
    DOI/handle
    http://dx.doi.org/10.1016/j.ipm.2023.103340
    http://hdl.handle.net/10576/52846
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video