• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational study on oxynitride perovskites for CO2 photoreduction

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0196890416304472-main.pdf (2.770Mb)
    Date
    2016-08-15
    Author
    Hafez, Ahmed M.
    Zedan, Abdallah F.
    AlQaradawi, Siham Y.
    Salem, Noha M.
    Allam, Nageh K.
    Metadata
    Show full item record
    Abstract
    The photocatalytic conversion of CO2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO2N, SrTaO2N, CaTaO2N, LaTiO2N, BaNbO2N, and SrNbO2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO2 photoreduction.
    URI
    http://www.sciencedirect.com/science/article/pii/S0196890416304472
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2016.05.069
    http://hdl.handle.net/10576/5292
    Collections
    • Chemistry & Earth Sciences [‎615‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video