• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Energy Dispatch Engine for PV-DG-ESS Hybrid Power Plants Considering Battery Degradation and Carbon Emissions

    Thumbnail
    View/Open
    Optimal_Energy_Dispatch_Engine_for_PV-DG-ESS_Hybrid_Power_Plants_Considering_Battery_Degradation_and_Carbon_Emissions.pdf (1.727Mb)
    Date
    2023
    Author
    Kanaan, Laith
    Ismail, Loay S.
    Gowid, Samer
    Meskin, Nader
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    Uncertainties in load and solar power forecasting, complex energy storage system (ESS) constraints, and feedback correction pose challenges for very short-term and short-term hybrid power plant scheduling. This paper proposes a two-stage mixed-integer linear programming (MILP)-based energy dispatch engine (EDE). The proposed model ensures optimized scheduling through accurate load and power forecasting, a feedback correction loop, and a set of constraints governing the state of charge (SOC) and state of health (SOH) of the ESS. Such an EDE aims to reduce the plant's operating costs and the usage of diesel generators (DGs), and minimize the cost of carbon emissions. To test the performance of the developed model, real-time load and photovoltaic (PV) data were used in conjunction with a PV-DG-ESS hybrid plant. The system was evaluated against a heuristic control model and a multistage stochastic control model, with the daily overall electricity and carbon emission costs as evaluation metrics. The test results revealed a 9.2% and 3.5% decrease in daily costs compared to the heuristic and stochastic methods, respectively, and a 29.4% decrease in carbon emission costs.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3281562
    http://hdl.handle.net/10576/53010
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video