• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly porous PtPd nanoclusters synthesized via selective chemical etching as efficient catalyst for ethanol electro-oxidation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Ahmad, Yahia H.
    Mohamed, Assem T.
    Alashraf, Abdullah
    Matalqeh, Maha
    El-Shafei, Ahmed
    Al-Qaradawi, Siham Y.
    Aljaber, Amina S.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Direct ethanol fuel cells (DEFCs) have received great interest owing to their high power density and environmental friendness. Nevertheless, the designing of active, durable, and efficient anode for DEFCs is a profound challenge. In this context, we reported the synthesis of PtPd porous nanoclusters (PtPd PNCs) as electrocatalyst for ethanol oxidation reaction (EOR). This was implemented through two-step synthesis. Firstly, ternary AgPtPd nanodendrites (NDs) were synthesized via ultrasound-assisted co-reduction of the metal precursors using ascorbic acid (AA) as a mild reductant and Pluronic F127 as structure-directing agent. Thereafter, PtPd PNCs were created by selective chemical etching of AgPtPd nanocrystals in 1 M HNO3. The textural properties, morphology, and elemental composition of the studied electrocatalysts were investigated, and their catalytic activities towards ethanol electrooxidation were examined. PtPd PNCs revealed a high surface area of 83.0 m2 g−1 and high porosity compared to its counterparts. Additionally, it depicted enhanced catalytic performance towards ethanol electrooxidation in 1 M KOH with mass activity of 1.8 A mg−1 compared to PtPd NDs (0.97 A mg−1), Pt NDs (0.51 A mg−1), and Pt/C (0.33 A mg−1). The enhanced catalytic performance of PtPd PNCs was ascribed to high surface area, high porosity, and increased active sites.
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2019.145222
    http://hdl.handle.net/10576/53397
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video