• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Single-Phase Step-Up Switched-Capacitor-Based Multilevel Inverter Topology with SHEPWM

    Thumbnail
    Date
    2021
    Author
    Siddique, Marif Daula
    Mekhilef, Saad
    Padmanaban, Sanjeevikumar
    Memon, Mudasir Ahmed
    Kumar, Chandan
    Metadata
    Show full item record
    Abstract
    Multilevel inverter (MLI) topologies play a crucial role in the dc-ac power conversion due to their high-quality performance and efficiency. This article aims to propose a new switched-capacitor-based boost multilevel inverter topology (SCMLI). The proposed topology consists of nine power semiconductor switches with one dc voltage source and two capacitors, capable of generating a nine-level output voltage waveform with twice voltage gain. With the addition of two switches, the proposed topology can be used for higher voltage-gain applications. Other features of the proposed topology include the self-voltage balancing of the capacitors, parallel operation of the capacitors, lower voltage stress across the switches, along with the inherent polarity changing capability. To obtain the high-quality output waveform, a selective harmonic elimination pulsewidth modulation technique is applied. In this technique, the detrimental low-order harmonics can easily be regulated and eliminated from the output voltage of MLI. The proposed topology is compared with the recently introduced SCMLI topologies considering various parameters to set the benchmark of the proposed topology. The performance of the proposed MLI is investigated through various experimental results using a laboratory prototype setup.
    DOI/handle
    http://dx.doi.org/10.1109/TIA.2020.3002182
    http://hdl.handle.net/10576/54573
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video