• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Trajectory and Positioning of UAVs for Small Cell HetNets: Geometrical Analysis and Reinforcement Learning Approach

    Thumbnail
    View/Open
    Optimal_Trajectory_and_Positioning_of_UAVs_for_Small_Cell_HetNets_Geometrical_Analysis_and_Reinforcement_Learning_Approach.pdf (2.148Mb)
    Date
    2023
    Author
    Dabiri, Mohammad Taghi
    Hasna, Mazen
    Zorba, Nizar
    Khattab, Tamer
    Metadata
    Show full item record
    Abstract
    In this paper, a dynamic unmanned aerial vehicle (UAV)-based heterogeneous network (HetNet) equipped with directional terahertz (THz) antennas is studied to solve the problem of transferring massive traffic of distributed small cells to the core network. To this end, we first characterize a detailed three-dimensional (3D) modeling of the dynamic UAV-assisted HetNet, by taking into account the random positions of small cell base stations (SBSs), spatial angles between THz links, real antenna pattern, and UAV's vibrations in the 3D space. We then formulate the problem for UAV trajectory to minimize the maximum outage probability (OP) of directional THz links. Then, using geometrical analysis and deep reinforcement learning (RL) method, we propose several algorithms to find the optimal trajectory and select an optimal pattern during the trajectory. For a network with slow time changes, we also propose a deep RL framework to solve the joint optimal UAV positioning and antenna pattern control. The simulation results confirm that the UAV trajectory or antenna pattern control is not enough to achieve acceptable performance, and the UAV should control its antenna patterns during the trajectory to manage the interference.
    DOI/handle
    http://dx.doi.org/10.1109/OJCOMS.2023.3323547
    http://hdl.handle.net/10576/56001
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video