• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Positioning for Road Information Services in Challenging Environments

    Thumbnail
    Date
    2020
    Author
    El-Wakeel, Amr S.
    Osman, Abdalla
    Zorba, Nizar
    Hassanein, Hossam S.
    Noureldin, Aboelmagd
    Metadata
    Show full item record
    Abstract
    Next-generation Intelligent Transportation Systems (ITS) of future road traffic monitoring will be required to provide reports on traffic status, road conditions, and driver behaviour. Road surface anomalies contribute to increasing the risk of traffic accidents, reduced driver comfort and increased vehicles' damage. The conventional integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) positioning solutions can suffer from errors because of inertial sensor noises and biases, especially when low-cost and commercial grade inertial sensors are used. In this work, we use a reduced inertial sensor system utilizing Micro-Electro-Mechanical-System (MEMS) based inertial sensors, to integrate with the GNSS receiver and provide robust positioning in urban canyons. To provide acceptable performance in challenging urban environments, our method de-noises the MEMS-based inertial sensor measurements using a technique based on a Bi-orthonormal search, which separates the monitored motion dynamics from both the inertial sensor bias errors and high-frequency noises. As a result, the performance of the positioning system is improved, providing reliable positioning accuracy during extended GNSS outages that occur in various areas. To show the significant enhancement achieved by the proposed approach, we examined the system performance over three road test trajectories involving MEMS-based inertial sensors and GNSS receivers mounted on our test vehicle. The superior performance of our proposed INS/GNSS integrated positioning system is demonstrated in this paper during various GNSS outages, in different areas, and under multiple driving scenarios.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2019.2958791
    http://hdl.handle.net/10576/56620
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video