• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Go/no-go decision model for owners using exhaustive CHAID and QUEST decision tree algorithms

    Thumbnail
    View/Open
    sustainability-13-00815-v4.pdf (2.034Mb)
    Date
    2021
    Author
    Gunduz, Murat
    Lutfi, Hamza M. A.
    Metadata
    Show full item record
    Abstract
    Go/no-go execution decisions are one of the most important strategic decisions for owners during the early stages of construction projects. Restructuring the process of decision-making during these early stages may have sustainable results in the long run. The purpose of this paper is to establish proper go/no-go decision-tree models for owners. The decision-tree models were developed using Exhaustive Chi-square Automatic Interaction Detector (Exhaustive CHAID) and Quick, Unbiased, Efficient Statistical Tree (QUEST) algorithms. Twenty-three go/no-go key factors were collected through an extensive literature review. These factors were divided into four main risk categories: organizational, project/technical, legal, and financial/economic. In a questionnaire distributed among the construction professionals, the go/no-go variables were asked to be ranked according to their perceived significance. Split-sample validation was applied for testing and measuring the accuracy of the Exhaustive CHAID and QUEST models. Moreover, Spearman's rank correlation and analysis of variance (ANOVA) tests were employed to identify the statistical features of the 100 responses received. The result of this study benchmarks the current assessment models and develops a simple and user-friendly decision model for owners. The model is expected to evaluate anticipated risk factors in the project and reduce the level of uncertainty. The Exhaustive CHAID and QUEST models are validated by a case study. This paper contributes to the current body of knowledge by identifying the factors that have the biggest effect on an owner's decision and introducing Exhaustive CHAID and QUEST decision-tree models for go/no-go decisions for the first time, to the best of the authors' knowledge. From the "sustainability" viewpoint, this study is significant since the decisions of the owner, based on a rigorous model, will yield sustainable and efficient projects.
    DOI/handle
    http://dx.doi.org/10.3390/su13020815
    http://hdl.handle.net/10576/56851
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video