• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A multi-string fault-tolerant multilevel inverter configuration for off-grid photovoltaic applications

    Thumbnail
    Date
    2021
    Author
    Airineni, Madhukar Rao
    Bhimireddy, Prathap Reddy
    Sahoo, Manoranjan
    Keerthipati, Sivakumar
    Metadata
    Show full item record
    Abstract
    With the intensified demand for enhanced harmonic profile of output voltage, better power quality, reduced dv/dt stress of devices and minimal filter requirement, multilevel inverters (MLIs) have emerged as a viable solution in renewable energy applications. In the conventional MLI, the order of device count, as well as control complexity, will increase with respect to the number of voltage levels. Moreover, this higher order of semiconductor devices may increase the chance of failure rate, which degrades the reliability of the inverter. To address these issues, in this article a 1-Φ fault-tolerant MLI topology is proposed for multi-string photovoltaic (PV) applications with reduced device count as well as improved reliability. This topology required four isolated DC sources with a voltage magnitude of Vdc/4 (where Vdc is the voltage requirement for the conventional neutral point clamped MLI), which are realized with multiple PV strings. The proposed MLI enhances the reliability of the system in terms of switch open circuit failures as well as source failures. Moreover, as compared to other conventional MLIs, the proposed MLI topology has the energy balancing capability between sources during partial shading condition of PV panels. The mathematical analysis of energy balancing between the DC sources is also presented in this article. The proposed 1-Φ MLI has been analyzed for various source failures and/or switch open circuit failures using MATLAB/Simulink as well as by implementing the laboratory prototype.
    DOI/handle
    http://dx.doi.org/10.1002/2050-7038.12803
    http://hdl.handle.net/10576/56858
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video