• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Geosynthetic-reinforced soils above voids: Observation of soil and geosynthetic deformation mechanisms

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0266114420300212-main.pdf (6.617Mb)
    Date
    2021
    Author
    da Silva Burke, T.S.
    Elshafie, M.Z.E.B.
    Metadata
    Show full item record
    Abstract
    Understanding how a geosynthetic-reinforced soil deforms in response to the formation of an underlying void is crucial to provide appropriate designs of these systems. Centrifuge models employing a trapdoor to simulate the void formation below a geosynthetic-reinforced sand were conducted to investigate the behaviour in a controlled environment at realistic stress levels. The plane-strain models allowed visual observations of the deformation mechanisms using Particle Image Velocimetry (PIV). These observations were used to validate assumptions about the geosynthetic behaviour made in current design recommendations, and address limitations related to the fill behaviour. Soil expansion was observed to be confined to a parabolic zone above the void related to the soil dilatancy, rather than with a single, unique coefficient of expansion. The zone of subsidence was characterised by an initial vertical prism with a funnel to the surface, with the surface settlement profile better described by a Gaussian distribution rather than the parabolic profile used historically. Detailed interpretation of the centrifuge tests has given new insight into the soil and geosynthetic behaviour relevant to how these systems deform in practice. This paves the way for more efficient design recommendations and consequently will facilitate better predictions of geosynthetic-reinforced soil behaviour above voids.
    DOI/handle
    http://dx.doi.org/10.1016/j.geotexmem.2020.02.013
    http://hdl.handle.net/10576/57446
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video