• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Restoration of motion-corrupted EEG signals using attention-guided operational CycleGAN

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0952197623016986-main.pdf (8.827Mb)
    Date
    2024
    Author
    Mahmud, Sakib
    Chowdhury, Muhammad E.H.
    Kiranyaz, Serkan
    Al Emadi, Nasser
    Tahir, Anas M.
    Hossain, Md Shafayet
    Khandakar, Amith
    Al-Maadeed, Somaya
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electroencephalogram (EEG) signals suffer substantially from motion artifacts even in ambulatory settings. Signal processing techniques for removing motion artifacts from EEG signals have limitations, and the potential of classical or deep machine-learning algorithms for this task remains largely unexplored. We propose Attention-Guided Operational CycleGAN (AGO-CycleGAN), a novel CycleGAN-based framework to remove motion artifacts and enhance the quality of corrupted EEG signals. It incorporates self-generative operational neurons and an attention-guided Feature Pyramid Network with modified bottlenecks as generators and PatchGAN-based discriminators. AGO-CycleGAN was trained and tested on a single-channel EEG dataset from 23 subjects, using a subject-independent Jackknife cross-validation approach. It outperformed other methods and was evaluated through qualitative and quantitative analysis, employing robust metrics in both temporal and frequency domains. The results indicate its effectiveness in restoring EEG signals affected by severe motion artifacts. AGO-CycleGAN achieves state-of-the-art EEG restoration performance in the temporal domain, gaining improvements in signal-to-noise ratio (ΔSNR) and temporal correlation (ηtemp) by 26.497 dB and 87.2%, respectively. It also showed excellent performance in preserving the spectral EEG components (delta, theta, alpha, beta, and gamma), evaluated through band power ratio before and after restoration. Spectral correlation (ηspec) improved by 93.5% after cleaning the motion artifacts. Qualitative evaluations showed excellently reconstructed clean EEG waveforms upon restoration. Spectral restoration visualized through Power Spectral Density (PSD) plots and per-band topographic maps showed a uniform removal of high-power motion artifact components throughout the spectrum. AGO-CycleGAN significantly outperformed existing techniques in EEG artifact removal and can be extended to multi-channel EEG systems.
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2023.107514
    http://hdl.handle.net/10576/57606
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video