• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0167739X18330760-main.pdf (5.105Mb)
    Date
    2019
    Author
    Al-Sa'd, Mohammad F.
    Al-Ali, Abdulla
    Mohamed, Amr
    Khattab, Tamer
    Erbad, Aiman
    Metadata
    Show full item record
    Abstract
    The omnipresence of unmanned aerial vehicles, or drones, among civilians can lead to technical, security, and public safety issues that need to be addressed, regulated and prevented. Security agencies are in continuous search for technologies and intelligent systems that are capable of detecting drones. Unfortunately, breakthroughs in relevant technologies are hindered by the lack of open source databases for drone's Radio Frequency (RF) signals, which are remotely sensed and stored to enable developing the most effective way for detecting and identifying these drones. This paper presents a stepping stone initiative towards the goal of building a database for the RF signals of various drones under different flight modes. We systematically collect, analyze, and record raw RF signals of different drones under different flight modes such as: off, on and connected, hovering, flying, and video recording. In addition, we design intelligent algorithms to detect and identify intruding drones using the developed RF database. Three deep neural networks (DNN) are used to detect the presence of a drone, the presence of a drone and its type, and lastly, the presence of a drone, its type, and flight mode. Performance of each DNN is validated through a 10-fold cross-validation process and evaluated using various metrics. Classification results show a general decline in performance when increasing the number of classes. Averaged accuracy has decreased from 99.7% for the first DNN (2-classes), to 84.5% for the second DNN (4-classes), and lastly, to 46.8% for the third DNN (10-classes). Nevertheless, results of the designed methods confirm the feasibility of the developed drone RF database to be used for detection and identification. The developed drone RF database along with our implementations are made publicly available for students and researchers alike.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2019.05.007
    http://hdl.handle.net/10576/57695
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video