• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of the eigenperiods of MDOF shear buildings using neural networks

    Thumbnail
    View/Open
    CD21_20415.pdf (1.024Mb)
    Date
    2021
    Author
    Plevris, Vagelis
    Solorzano, German
    Metadata
    Show full item record
    Abstract
    The study of multi-degree of freedom (MDOF) systems is essential to evaluate and understand the seismic response of buildings. Through a MDOF idealization, the dynamic properties of the building such as its natural frequencies and modal shapes can be approximated. These properties are then used to determine the final design of the structural system of the building. A shear building MDOF system consists of an idealized model of the building in which the masses are concentrated at the floor levels and each floor is connected to other adjacent floors with elements that provide stiffness and only allow horizontal displacements. The dynamic properties of the idealized system are obtained by numerically solving a generalized eigenvalue problem which is a computationally expensive operation. In this paper, we propose a methodology to replace the required solution of the generalized eigenvalue problem with a Machine Learning NN-based approach. Two shear building models with 3 and 5 stories are considered, where the mass and the stiffness are held constant for every story. For every model, a database with the solution of several idealized models with varying mass and stiffness is created using a small number of samples (m, k pairs). Finally, an Artificial Neural Network is trained with the database to predict the eigenperiods of other similar models avoiding the computation of the eigenvalue problem. The results show a high level of accuracy in the predictions and a significant reduction of the computational time compared to the hard-computing mathematical approach. Furthermore, the approach demonstrated in this study can be easily expanded to be applied to more complex dynamic systems for future research.
    DOI/handle
    http://dx.doi.org/10.7712/120121.8755.20415
    http://hdl.handle.net/10576/57739
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video