• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Task DRL for Rate Control in RIS-Assisted Multi-Cell Dual-Connectivity HetNets

    View/Open
    Multi-Task_DRL_for_Rate_Control_in_RIS-Assisted_Multi-Cell_Dual-Connectivity_HetNets.pdf (5.720Mb)
    Date
    2022
    Author
    Alwarafy, Abdulmalik
    Abdallah, Mohamed
    Al-Dhahir, Naofal
    Khattab, Tamer
    Hamdi, Mounir
    Metadata
    Show full item record
    Abstract
    Reconfigurable Intelligent Surface (RIS) has recently emerged as an enabling technology to enhance reliability and overcome blockage in future heterogeneous wireless networks (HetNets). Adjusting amplitudes and phases of the RIS elements to achieve such goals is a major challenge. In this paper, we study the problem of network rate control to achieve users (UEs) fairness and smallcells (SCs) load balancing in multi-cell RIS-assisted multiple-input single-output (MISO) HetNets. We consider dual-connectivity UEs that can simultaneously connect to mmWave-operating SCs and sub-6GHz-operating RIS-assisted macrocell (MC), where RISs are mainly deployed to enhance sub-6GHz signal reception and mitigate interference. Then, we formulate an optimization problem whose objective is to jointly control the active beamforming vectors of SCs and MC on the one hand and the passive beamforming vectors of RISs on the other hand to maximize UEs fairness and network load balancing. Due to the high complexity of the formulated problem, we propose a novel multi-task deep reinforcement learning (MTDRL) model based on the Deep Deterministic Policy Gradient (DDPG) algorithm to solve the problem and learn system dynamics. Through proper definitions of network tasks and their main elements, we show via simulations that our proposed MTDRL-based model ensures fair distribution of rates within UEs and SCs and that it outperforms key benchmarks.
    DOI/handle
    http://dx.doi.org/10.1109/GLOBECOM48099.2022.10001735
    http://hdl.handle.net/10576/57795
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video