• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RL-CEALS: Reinforcement Learning for Collaborative Edge Assisted Live Streaming

    View/Open
    RL-CEALS_Reinforcement_Learning_for_Collaborative_Edge_Assisted_Live_Streaming.pdf (1.084Mb)
    Date
    2023
    Author
    Mrad, Ilyes
    Baccour, Emna
    Hamila, Ridha
    Khan, Muhammed Asif
    Erbad, Aiman
    Hamdi, Mounir
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Crowdsourced live streaming services (CLS) present significant challenges due to massive data size and dynamic user behavior. Service providers must accommodate personalized QoE requests, while managing computational burdens on edge servers. Existing CLS approaches use a single edge server for both transcoding and user service, potentially overwhelming the selected node with high computational demands. In response to these challenges, we propose the Reinforcement Learning-based-Collaborative Edge-Assisted Live Streaming (RL-CEALS) framework. This innovative approach fosters collaboration between edge servers, maintaining QoE demands and distributing computational burden cost-effectively. By sharing tasks across multiple edge servers, RL-CEALS makes smart decisions, efficiently scheduling serving and transcoding of CLS. The design aims to minimize the streaming delay, the bitrate mismatch, and the computational and bandwidth costs. Simulation results reveal substantial improvements in the performance of RL-CEALS compared to recent works and baselines, paving the way for a lower cost and higher quality of live streaming experience.
    DOI/handle
    http://dx.doi.org/10.1109/ISCC58397.2023.10218244
    http://hdl.handle.net/10576/57846
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video