• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Symbol Rate NOMA for Improving Connectivity in 6G Communications Networks

    Thumbnail
    View/Open
    Multi-Symbol_Rate_NOMA_for_Improving_Connectivity_in_6G_Communications_Networks.pdf (728.2Kb)
    Date
    2024
    Author
    Al-Dweik, Arafat
    Alsusa, Emad
    Dobre, Octavia A.
    Hamila, Ridha
    Metadata
    Show full item record
    Abstract
    In non-orthogonal multiple access (NOMA), user pairing, power allocation, and performance evaluation are typically performed assuming all users have equal symbol rates. However, such an assumption can significantly limit the design flexibility of NOMA and devalue its potential. Therefore, this article considers a generalized scenario in which the user-paring process may include users with different symbol rates. Hence, the proposed configuration is denoted multi-symbol rate NOMA (MR-NOMA). In MR-NOMA, the relationship between symbol rate and energy is exploited to add a new degree of freedom when assigning power to paired users. That is, the fact that the symbol energy is proportional to the symbol duration extends the range of power values that can be allocated to high symbol rate users while satisfying the quality-of-service requirements for all users. Consequently, the number of users served can be increased, or such a feature can be used to increase the link throughput. The results obtained for the two-user scenario show that with optimal power selection, users of high and low symbol rates can achieve lower bit error rates (BERs), which in turn increases system throughput as a result of improved transmission reliability.
    DOI/handle
    http://dx.doi.org/10.1109/MCOM.001.2300351
    http://hdl.handle.net/10576/57850
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video